Adversarial Bayesian Simulation

Veronika Ročková and Yuexi Wang

Booth School of Business
University of Chicago

Bayesian Inference with Intractable Likelihoods

Our framework: data $X^{(n)}=\left\{X_{i}\right\}_{i=1}^{n}$ realized from $P_{0}=P_{\theta_{0}}$ indexed by $\theta_{0} \in \Theta$ with a prior $\pi(\theta)$.
We assume that P_{θ}, for each $\theta \in \Theta$, admits a density p_{θ}.
We want to draw from the posterior

$$
\begin{equation*}
\pi_{n}\left(\theta \mid X^{(n)}\right)=\frac{p_{\theta}\left(X^{(n)}\right) \pi(\theta)}{\int_{\Theta} p_{\vartheta}\left(X^{(n)}\right) d \Pi(\vartheta)} . \tag{1}
\end{equation*}
$$

Our focus is on situations where the likelihood p_{θ} is too costly to evaluate \odot but can be readily sampled from Θ.
\leadsto Lotka-Volterra model: Population dynamics of animals in ecology
\leadsto Heston model: Stochastic volatility dynamics in finance
\leadsto Dynamic choice models: consumer dynamics in marketing

Bayesian Inference with Intractable Likelihoods

ABC: A generator simulates fake data from p_{θ} and reduces them to summary statistics

$$
\pi(\theta) \times \prod_{i=1}^{n} p_{\theta}\left(X_{i}^{\theta}\right) \longrightarrow \begin{array}{ll}
\left(\theta, X^{\theta}\right) & \longrightarrow\left\|s\left(X^{\theta}\right)-s(X)\right\|>\varepsilon \\
\left(\theta, X^{\theta}\right) & \longrightarrow\left\|s\left(X^{\theta}\right)-s(X)\right\|<\varepsilon
\end{array}
$$

(3) Reliance on summary statistics
(2) Only proper priors
© Not great for model comparisons
© Parallel computation feasible

Bayesian Inference with Intractable Likelihoods

$$
\pi_{n}(\theta \mid X) \propto \pi(\theta) \times \prod_{i=1}^{n} p_{\theta}\left(X_{i}\right)
$$

Likelihood of $s(X)$

$$
p_{\theta}(s(X))
$$

Synthetic likelihood MH

Unbiased estimator $\prod_{i=1}^{n} \hat{p}_{\theta}\left(X_{i}\right)$
Pseudo-marginal MH

Bayesian Synthetic Likelihood: Constructs a likelihood from summary statistics
(2) Reliance on summary statistics

Pseudo-marginal MH: Replace the likelihood in the MH ratio with an importance sampling estimate
(8) Many simulation realizations
(2) May not yield the correct stationary distribution

Turning GANs into Posterior Simulators

Generative Adversarial Networks are a two-player minimax game

$$
\begin{equation*}
\left(g^{*}, d^{*}\right)=\arg \min _{g} \max _{d}\left[\mathrm{E}_{X \sim P_{0}} \log d(X)+\mathrm{E}_{Z \sim \pi_{z}} \log (1-d(g(Z))]\right. \tag{2}
\end{equation*}
$$

g^{*} minimizes the Jensen-Shannon divergence

$$
J S\left(P_{0}, P_{g}\right), \quad \text { where } \quad g(Z) \sim P_{g} \quad \text { and } \quad Z \sim \pi_{z}
$$

Wasserstein GANs instead minimize
$d_{w}\left(P_{0}, P_{g}\right)=\sup _{f \in \mathcal{F}_{W}}\left|E_{X \sim P_{0}} f(X)-E_{X \sim P_{g}} f(X)\right|$ where $\mathcal{F}_{W}=\left\{f:\|f\|_{L} \leq 1\right\}$.
In practice, one replaces expectations with averages and restricts g and d to neural networks.

Generative Adversarial Networks

Generator against the Adversary

Generative Adversarial Networks

Generator against the Adversary

The Generator

Generate latent data $Z \sim \pi_{Z}$ for some distribution π_{z}.
Filter Z through a deterministic mapping g_{β} such that

$$
g_{\beta}(Z) \sim P_{\theta} .
$$

Based on the feedback from the Classifier, $\boldsymbol{\beta}$ is updated so that P_{θ} is closer and closer to P_{0}, where the game solution satisfies

$$
g^{*}(Z) \sim P_{0} .
$$

You can think of $\widetilde{X}_{i}^{\theta}=g_{\beta}\left(Z_{i}\right) \sim P_{\theta}$ as the 'fake' data.
Classifier against the Generator

The Classifier

The classification problem defined through

$$
\begin{equation*}
\max _{d \in \mathcal{D}}\left[\frac{1}{n} \sum_{i=1}^{n} \log d\left(X_{i}\right)+\frac{1}{m} \sum_{i=1}^{m} \log \left(1-d\left(\widetilde{X}_{i}^{\theta}\right)\right)\right], \tag{3}
\end{equation*}
$$

where $d: \mathcal{X} \rightarrow(0,1)$ (1 for 'real' and 0 for 'fake' data)
Oracle discriminator

$$
d_{\theta}^{*}(X):=\frac{p_{\theta_{0}}(X)}{p_{\theta_{0}}(X)+p_{\theta}(X)} .
$$

The optimal Generator leaves d_{θ}^{*} maximally confused (assigning score $1 / 2)$, which occurs when $p_{\theta}=p_{\theta_{0}}$.

Contrastive Learning for Bayesian Simulation

For iid data $\left(p_{\theta}^{(n)}=\Pi_{i} p_{\theta}\left(X_{i}\right)\right)$, we can rewrite the likelihood as

$$
p_{\theta}^{(n)}=p_{0}^{(n)} \times \exp \left(\sum_{i=1}^{n} \log \frac{1-d_{\theta}^{*}\left(X_{i}\right)}{d_{\theta}^{*}\left(X_{i}\right)}\right)
$$

(1) Likelihood estimator? Deploy $\widehat{d}_{n, m}(\cdot)$ (e.g. neural network)

$$
\widehat{p}_{\theta}^{(n)}=p_{0}^{(n)} \times \exp \left(\sum_{i=1}^{n} \log \frac{1-\widehat{d}_{n, m}^{\theta}\left(X_{i}\right)}{\widehat{d}_{n, m}^{\theta}\left(X_{i}\right)}\right) .
$$

Kaji and Rockova (2021): Metropolis Hastings via Classification
(2) KL estimator?

$$
\begin{equation*}
\hat{K}\left(\boldsymbol{X}, \tilde{\boldsymbol{X}}^{\theta}\right)=\mathrm{P}_{n} \log \frac{\widehat{\partial}_{n, m}^{\theta}}{1-\widehat{a}_{n, m}^{\theta}}=\frac{1}{n} \sum_{i=1}^{n} \log \frac{\widehat{\partial}_{n, m}^{\theta}\left(X_{i}\right)}{1-\widehat{d}_{n, m}^{\theta}\left(X_{i}\right)} . \tag{4}
\end{equation*}
$$

Wang, Kaji and Rockova (2022): ABC via Classification
© Both require iid data and to run classification at every iteration!

Conditional GANs

GANs can be trained to simulate from conditional distributions.
Consider a two-player minimax game

$$
\left(g^{*}, d^{*}\right)=\arg \min _{g \in \mathcal{G}} \max _{d \in \mathcal{D}} D(g, d)
$$

prescribed by
$D(g, d)=E_{(X, \theta) \sim \pi(X, \theta)} \log d(X, \theta)+E_{X \sim \pi(X), Z \sim \pi_{z}} \log [1-d(X, g(Z, X)]$.
Uniformly on \mathcal{X} and Θ (for 'flexible' \mathcal{G} and \mathcal{D}), the solution (g^{*}, d^{*}) satisfies

$$
\pi_{g^{*}}(\theta \mid X)=\frac{\pi(X, \theta)}{\pi(X)}=\pi(\theta \mid X)
$$

and

$$
d_{g}^{*}(X, \theta)=\frac{\pi(X, \theta)}{\pi(X, \theta)+\pi_{g}(\theta \mid X) \pi(X)} \quad \text { for any } g \in \mathcal{G}
$$

Bayesian GANs

The B-GAN Algorithm:
Simulate the ABC reference table $\left\{\left(\theta_{i}, X_{i}\right)\right\}_{i=1}^{T}$ from

$$
\pi(\theta, X)=\pi(\theta) p_{\theta}^{(n)}\left(X^{(n)}\right) \quad \text { and } \quad\left\{Z_{j}\right\}_{j=1}^{T} \stackrel{\text { iid }}{\sim} \pi_{Z}(\cdot) .
$$

Choose function classes \mathcal{G} and \mathcal{D} (e.g. neural networks parametrized by β and ω).
Train the empirical version of Wasserstein conditional GANs

$$
\begin{equation*}
\widehat{\boldsymbol{\beta}}_{T}=\arg \min _{\beta: g_{\beta} \in \mathcal{G}}\left[\max _{\omega: f_{\omega} \in \mathcal{F}_{W}}\left|\sum_{j=1}^{T} f_{\omega}\left(X_{j}, g_{\beta}\left(Z_{j}, X_{j}\right)\right)-\sum_{j=1}^{T} f_{\omega}\left(X_{j}, \theta_{j}\right)\right|\right] . \tag{5}
\end{equation*}
$$

Simulate

$$
\begin{equation*}
\widetilde{\theta}_{j}=g_{\widehat{\boldsymbol{\beta}}_{T}}\left(Z_{j}, X_{0}\right) \quad \text { for } \quad Z_{j} \stackrel{\text { iid }}{\sim} \pi_{Z} \tag{6}
\end{equation*}
$$

Observed data X_{0} at evaluation stage, not training stage!

Toy Example

$X=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)^{\prime}$ consists of $n=4$ two-dimensional Gaussian observations with $x_{j} \sim \mathcal{N}\left(\mu_{\boldsymbol{\theta}}, \Sigma_{\boldsymbol{\theta}}\right)$ parametrized by $\boldsymbol{\theta}=\left(\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}, \theta_{5}\right)^{\prime}$, where

$$
\mu_{\boldsymbol{\theta}}=\left(\theta_{1}, \theta_{2}\right)^{\prime} \quad \text { and } \quad \Sigma_{\boldsymbol{\theta}}=\left(\begin{array}{cc}
s_{1}^{2} & \rho s_{1} s_{2} \\
\rho s_{1} s_{2} & s_{2}^{2}
\end{array}\right)
$$

with $s_{1}=\theta_{3}^{2}, s_{2}=\theta_{4}^{2}$ and $\rho=\tanh \left(\theta_{5}\right)$.

$T=100 K$, batchsize for SGD is 6400

Sequential Refinement

(2) B-GAN is not trained on observed data!
(3) We want $\pi(\theta \mid X)$ at observed data $X=X_{0}$, not at any X.
(*) The ABC reference table $\left\{\left(\theta_{j}, X_{j}\right)\right\}_{j=1}^{T}$ may not contain enough data points X_{j} in the vicinity of X_{0} to train the simulator when the prior $\pi(\theta)$ is too vague.
© Use pilot simulator $g_{\widehat{\beta}_{T}}\left(Z, X_{0}\right)$ in (6) obtained under the original prior $\pi(\theta)$ as a proposal for the next round
(-) The 'wrong' prior can be corrected for by importance re-weighting with weights $r(\theta)=\pi(\theta) / \widetilde{\pi}(\theta)$.

Toy Example

Performance summary

Figure: Maximum Mean Discrepancies (MMD, log scale) between the true posteriors and the approximated posteriors. The box-plots are computed from 10 repetitions.

TV Bounds: The Three Terms

(1) The ability of the critic to tell the true model apart from the approximating model

$$
\begin{equation*}
\mathcal{A}_{1}\left(\mathcal{F}, \widehat{\boldsymbol{\beta}}_{T}\right) \equiv \inf _{\omega: f_{\omega} \in \mathcal{F}}\left\|\log \frac{\pi(\theta \mid X)}{\pi_{\widehat{\boldsymbol{\beta}}_{T}}(\theta \mid X)}-f_{\omega}(X, \theta)\right\|_{\infty} \tag{7}
\end{equation*}
$$

(2) The ability of the generator to approximate the average true posterior

$$
\begin{equation*}
\mathcal{A}_{2}(\mathcal{G}) \equiv \inf _{\beta: g_{\beta} \in \mathcal{G}}\left[E_{X}\left\|\log \frac{\pi_{\beta}(\theta \mid X)}{\pi(\theta \mid X)}\right\|_{\infty}\right]^{1 / 2}, \tag{8}
\end{equation*}
$$

(3) The complexity of the (generating and) critic function classes measured by the pseudo-dimension $\operatorname{Pdim}(\cdot)$.
We denote with $\mathcal{H}=\left\{h_{\omega, \beta}: h_{\omega, \beta}(Z, X)=f_{\omega}\left(g_{\beta}(Z, X), X\right)\right\}$ a structured composition of networks $f_{\omega} \in \mathcal{F}$ and $g_{\beta} \in \mathcal{G}$.

TV Bounds

Let $\widehat{\boldsymbol{\beta}}_{T}$ be as in (5) where $\mathcal{F}=\left\{f:\|f\|_{\infty} \leq B\right\}$ for some $B>0$.
Denote with E the expectation with respect to $\left\{\left(X_{j}, \theta_{j}\right)\right\} \underset{j=1}{T} \stackrel{\mathrm{idid}}{\sim} \pi(X, \theta)$ and $\left\{Z_{j}\right\}_{j=1}^{T} \stackrel{\text { iid }}{\sim} \pi_{Z}$ in the reference table.
Prior Concentration: Assume

$$
\begin{equation*}
\Pi\left[B_{n}\left(\theta_{0} ; \epsilon\right)\right] \geq \mathrm{e}^{-C_{2} n \epsilon^{2}} \quad \text { for some } C_{2}>0 \text { and } \epsilon>0 . \tag{9}
\end{equation*}
$$

Then for $T \geq \operatorname{Pdim}(\mathcal{F}) \vee \operatorname{Pdim}(\mathcal{H})$ we have for any $C>0$

$$
P_{\theta_{0}}^{(n)} \mathrm{E} d_{T V}^{2}\left(\pi\left(\theta \mid X_{0}\right), \pi_{\widehat{\boldsymbol{\beta}}_{T}}\left(\theta \mid X_{0}\right)\right) \leq \mathcal{C}_{n}^{T}\left(\widehat{\boldsymbol{\beta}}_{T}, \epsilon, C\right)
$$

where, for some $\widetilde{C}>0$ and $\operatorname{Pmax} \equiv \operatorname{Pdim}(\mathcal{F}) \vee \operatorname{Pdim}(\mathcal{H})$,

$$
C_{n}^{T}\left(\widehat{\boldsymbol{\beta}}_{T}, \epsilon, C\right)=\frac{1}{C^{2} n \epsilon^{2}}+\frac{\mathrm{e}^{\left(1+C_{2}+C\right) n \epsilon^{2}}}{4}\left[2 \mathcal{A}_{1}\left(\mathcal{F}, \widehat{\boldsymbol{\beta}}_{T}\right)+\frac{B \mathcal{A}_{2}(\mathcal{G})}{\sqrt{2}}+4 \widetilde{C} B \sqrt{\frac{\log T \times P \max }{T}}\right] .
$$

Implicit Variational Bayes

The goal of VB is to find a set of parameters $\boldsymbol{\beta}^{*}$ that maximize ELBO

$$
\begin{equation*}
\log \pi\left(X_{0}\right) \geq \mathcal{L}(\boldsymbol{\beta}) \equiv \int \log \left(\frac{\pi\left(X_{0}, \theta\right)}{q_{\boldsymbol{\beta}}\left(\theta \mid X_{0}\right)}\right) q_{\boldsymbol{\beta}}\left(\theta \mid X_{0}\right) \mathrm{d} \theta \tag{10}
\end{equation*}
$$

The tightness increases with expressiveness of $q_{\beta}(\cdot)$, where the equality occurs when $q_{\beta}\left(\theta \mid X_{0}\right)=\pi\left(\theta \mid X_{0}\right)$.
Implicit VB defines $q_{\beta}\left(\theta \mid X_{0}\right)$ through a push-forward mapping g_{β}.
We can re-write the ELBO in terms of Kullback-Leibler discrepancy

$$
\mathcal{L}(\boldsymbol{\beta})=-\mathrm{KL}\left(q_{\boldsymbol{\beta}}\left(\theta \mid X_{0}\right) \mid \pi\left(\theta \mid X_{0}\right)\right)+C
$$

(8) We cannot evaluate the conditional density ratio in the ELBO
(3) We can estimate the ratio of joint distributions with a different conditional, given X, but the same marginal $\pi(X)$.

Adversarial Variational Bayes

© Joint LRT trick: define

$$
\begin{equation*}
\frac{d_{g_{\beta}}^{*}(X, \theta)}{1-d_{g_{\beta}}^{*}(X, \theta)}=\frac{\pi(X, \theta)}{q_{\beta}(\theta \mid X) \pi(X)}, \tag{11}
\end{equation*}
$$

where $d_{g_{\beta}}^{*}:(\mathcal{X} \times \Theta) \rightarrow(0,1)$
The variational lower bound (10) can be re-written as

$$
\begin{equation*}
\mathcal{L}(\boldsymbol{\beta}) \equiv E_{\theta \sim q_{\mathcal{\beta}}\left(\theta \mid X_{0}\right)}\left[\operatorname{logit}\left(d_{g_{\boldsymbol{\beta}}}^{*}\left(X_{0}, \theta\right)\right)\right]+\boldsymbol{C} . \tag{12}
\end{equation*}
$$

Note that $d_{g_{\beta}}^{*}(\theta, X)$ is a solution to

$$
\begin{equation*}
d_{g_{\beta}}^{*}(\theta, X)=\arg \max _{d \in \mathcal{D}} D\left(g_{\beta}, d\right) \tag{13}
\end{equation*}
$$

Adversarial VB is a max-max game!

Given $\beta^{(t)}$: find $\psi^{(t+1)}$ such that

$$
\psi^{(t+1)}=\arg \max _{\psi} D\left(g_{\beta^{(t)}}, d_{\psi}\right)
$$

Given $\psi^{(t+1)}$: find $\boldsymbol{\beta}^{(t+1)}$

$$
\boldsymbol{\beta}^{(t+1)}=\arg \max _{\beta} \mathrm{E}_{\theta \sim q_{\mathcal{\beta}}\left(\theta \mid X_{0}\right)}\left[\operatorname{logit}\left(d_{\psi^{(t+1)}}\left(\theta, X_{0}\right)\right)\right]
$$

...and there are Wasserstein versions

Instead of KL, we can minimize Wasserstein distance between $\pi\left(\theta \mid X_{0}\right)$ and $q_{\boldsymbol{\beta}}\left(\theta \mid X_{0}\right):$

Using the ABC reference table $\left.\left\{\left(\theta_{j}, X_{j}\right)\right\}\right\}_{j=1}^{T} \stackrel{\text { iid }}{\sim} \pi(\theta, X),\left\{Z_{j}\right\}_{j=1}^{T} \stackrel{\text { iid }}{\sim} \pi_{Z}(\cdot)$,

- update $\boldsymbol{\omega}^{(t+1)}$, given $\boldsymbol{\beta}^{(t)}$,

$$
\begin{equation*}
\boldsymbol{\omega}^{(t+1)}=\arg \max _{\omega: f_{\omega} \in \mathcal{F}}\left[\sum_{j=1}^{T} f_{\omega}\left(X_{j}, g_{\mathcal{\beta}^{(t)}}\left(Z_{j}, X_{j}\right)\right)-\sum_{j=1}^{T} f_{\omega}\left(X_{j}, \theta_{j}\right)\right] \tag{15}
\end{equation*}
$$

- update $\boldsymbol{\beta}^{(t+1)}$, given $\omega^{(t+1)}$,

$$
\begin{equation*}
\boldsymbol{\beta}^{(t+1)}=\arg \min _{\boldsymbol{\beta}: \mathrm{g}_{\boldsymbol{\beta}} \in \mathcal{G}}\left[\sum_{j=1}^{T} f_{\omega^{(t+1)}}\left(X_{0}, g_{\beta}\left(Z_{j}, X_{0}\right)\right)+C\right], \tag{16}
\end{equation*}
$$

where C does not depend on β, given the most recent update $\omega^{(t+1)}$.

Lotka-Volterra Model

The Lotka-Volterra (LV) model describes population evolutions in ecosystems where predators interact with prey.
The model is deterministically prescribed via a system of first-order non-linear ODEs with four parameters $\theta=\left(\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}\right)^{\prime}$ controlling
(1) the rate $r_{1}^{t}=\theta_{1} X_{t} Y_{t}$ of a predator being born,
(2) the rate $r_{2}^{t}=\theta_{2} X_{t}$ of a predator dying,
(3) the rate $r_{3}^{t}=\theta_{3} Y_{t}$ a prey being born and
(4) the rate $r_{4}^{t}=\theta_{4} X_{t} Y_{t}$ a prey dying.

Despite easy to sample from (using the Gillespie algorithm), the likelihood for this model is unavailable which makes this model a natural candidate for ABC

The pseudo-marginal approach far from straightforward, if at all possible \odot

Lotka-Volterra: A Closer Look

Lotka-Volterra: $\theta=(0.01,0.5,1,0.01)^{\prime}$

Lotka-Volterra: $\theta=(0.01,0.2,1,0.01)^{\prime}$

Simulation is started at $X_{0}=50$ and $Y_{0}=100$ simulated over 20 time units and recorded observations every 0.1 time units, resulting in a series of $T=201$ observations each.

True values $\theta^{0}=(0.01,0.5,1,0.01)$

Prepping for ABC

Lotka-Volterra: $\theta=(0.01, ., 1,0.01)^{\prime}$

LEFT:
ABC tolerance (based on summary statistics) RIGHT:
Classification-based log-lik estimator running LASSO (glmnet)

Likelihood is Spiky!

Lotka-Volterra: Estimated Likelihood

Lotka-Volterra: Estimated Likelihood

$\leadsto \mathrm{ABC}$ will need a very informative prior

ABC Results

Uniform Prior: on $[0,0.1] \times[0,1] \times[0,2] \times[0,0.1]$

Upper panel: $M=10000$ and $r=100$
Lower panel: $M=100000$ and $r=1000$.

MHC (Kaji and Rockova (2021) Results

Initialized at posterior mean from a pilot ABC run.

MCMC trace plots (with $M=10000$) and histograms (without a burnin 1000)

MHC: Posterior Summary Statistics

| | $\theta_{1}^{0}=0.01$ | | | $\theta_{2}^{0}=0.5$ | | | | $\theta_{3}=1$ | | $\theta_{4}=0.01$ | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Method | θ | l | u |
| ABC1 | 0.015 | 0.003 | 0.038 | 0.554 | 0.037 | 0.985 | 1.315 | 0.189 | 1.955 | 0.012 | 0.004 | 0.029 |
| ABC2 | 0.016 | 0.003 | 0.042 | 0.604 | 0.087 | 0.980 | 1.259 | 0.205 | 1.971 | 0.013 | 0.003 | 0.024 |
| MHC | 0.01 | 0.008 | 0.014 | 0.531 | 0.41 | 0.685 | 1.029 | 0.791 | 1.301 | 0.010 | 0.007 | 0.014 |

ABC1: $M=10000$ and $r=100$ (accepted samples)
ABC2: $M=100000$ and $r=1000$ (accepted samples)
MHC: $M=10000$ with burnin 1000
$\bar{\theta}$ denotes posterior mean, I and u denote the lower and upper boundaries of 95% credible intervals.

What about $n=1$?

We compare B-GAN with Sequential Neural Likelihood (SNL), W2 ABC, and Summary Statistics ABC

Sequential refinement and VB refinement work well.

B-GAN Performance

Summary statistics of the approximated posteriors (averaged over 10 repetitions).

(scale)	$\theta_{1}=0.01$		$\theta_{2}=0.5$		$\theta_{3}=1.0$		$\theta_{4}=0.01$	
	bias $\left(\times 10^{-3}\right)$	Cl width $\left(\times 10^{-2}\right)$	$\begin{aligned} & \text { bias } \\ & \left(\times 10^{-1}\right) \end{aligned}$	CI width	bias	CI width	$\begin{gathered} \text { bias } \\ \left(\times 10^{-2}\right) \end{gathered}$	Cl width $\left(\times 10^{-2}\right)$
B-GAN	4.15	1.89	1.09	0.45	0.24	1.00	0.49	2.18
B-GAN-2S	0.70	0.21 (0.9)	0.42	0.10 (0.7)	0.11	0.33 (0.9)	0.13	0.34 (0.8)
B-GAN-VB	1.02	0.25 (0.7)	0.38	0.11 (0.9)	0.11	0.29 (0.8)	0.12	0.29 (0.7)
SNL	1.05	0.44	0.45	0.17	0.13	0.48	0.15	0.52
SS	9.58	3.80	2.49	0.91	0.49	1.76	0.68	2.72
W2	10.99	4.02 (0.9)	2.42	0.84	0.47	1.73	0.79	2.82

Bold fonts mark the best model of each column. The coverage of the 95% credible intervals are 1 unless otherwise noted in the parentheses.

Wang, Y. and Rockova, V. (2022) Adversarial Bayesian

 Simulation
Thank you!

