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Bayesian Inference with Intractable Likelihoods

Our framework: data X (n) = {Xi}n
i=1 realized from P0 = Pθ0

indexed by θ0 ∈ Θ with a prior π(θ).

We assume that Pθ, for each θ ∈ Θ, admits a density pθ.

We want to draw from the posterior

πn(θ ∣ X (n)) = pθ(X (n))π(θ)
∫Θ pϑ(X (n)) dΠ(ϑ)

. (1)

Our focus is on situations where the likelihood pθ is too costly to
evaluate / but can be readily sampled from ,.
↝ Lotka-Volterra model: Population dynamics of animals in

ecology
↝ Heston model: Stochastic volatility dynamics in finance
↝ Dynamic choice models: consumer dynamics in marketing



Bayesian Inference with Intractable Likelihoods

ABC: A generator simulates fake data from pθ and reduces them to
summary statistics

/ Reliance on summary statistics

/ Only proper priors

/ Not great for model comparisons

, Parallel computation feasible



Bayesian Inference with Intractable Likelihoods

Bayesian Synthetic Likelihood: Constructs a likelihood from
summary statistics

/ Reliance on summary statistics

Pseudo-marginal MH: Replace the likelihood in the MH ratio with an
importance sampling estimate

/ Many simulation realizations

/ May not yield the correct stationary distribution



Turning GANs into Posterior Simulators
Generative Adversarial Networks are a two-player minimax game

(g∗,d∗) = arg min
g

max
d

[EX∼P0 log d(X) +EZ∼πZ log(1 − d(g(Z))] (2)

g∗ minimizes the Jensen-Shannon divergence

JS(P0,Pg), where g(Z) ∼ Pg and Z ∼ πZ .

Wasserstein GANs instead minimize

dW(P0,Pg) = sup
f∈FW

∣EX∼P0 f (X) −EX∼Pg f (X)∣ where FW = {f ∶ ∥f ∥L ≤ 1}.

In practice, one replaces expectations with averages and restricts g
and d to neural networks.



Generative Adversarial Networks

Generator against the Adversary



Generative Adversarial Networks

Generator against the Adversary



The Generator
Generate latent data Z ∼ πZ for some distribution πZ .

Filter Z through a deterministic mapping gβ such that

gβ(Z) ∼ Pθ.

Based on the feedback from the Classifier, β is updated so that Pθ is
closer and closer to P0, where the game solution satisfies

g∗(Z) ∼ P0.

You can think of X̃ θ
i = gβ(Zi) ∼ Pθ as the ‘fake’ data.

Classifier against the Generator



The Classifier
The classification problem defined through

max
d∈D

[ 1
n

n

∑
i=1

log d(Xi) +
1
m

m

∑
i=1

log(1 − d(X̃ θ
i ))] , (3)

where d ∶ X → (0,1) (1 for ‘real’ and 0 for ‘fake’ data)

Oracle discriminator

d∗
θ (X) ∶=

pθ0(X)
pθ0(X) + pθ(X)

.

The optimal Generator leaves d∗
θ maximally confused (assigning

score 1/2), which occurs when pθ = pθ0 .



Contrastive Learning for Bayesian Simulation
For iid data (p(n)θ =∏i pθ(Xi)), we can rewrite the likelihood as

p(n)θ = p(n)0 × exp(
n

∑
i=1

log
1 − d∗

θ (Xi)
d∗
θ (Xi)

) .

(1) Likelihood estimator? Deploy d̂n,m(⋅) (e.g. neural network)

p̂(n)θ = p(n)0 × exp
⎛
⎝

n

∑
i=1

log
1 − d̂θn,m(Xi)

d̂θn,m(Xi)
⎞
⎠
.

Kaji and Rockova (2021): Metropolis Hastings via Classification

(2) KL estimator?

K̂ (X , X̃
θ
) = Pn log

d̂θn,m
1 − d̂θn,m

= 1
n

n

∑
i=1

log
d̂θn,m(Xi)

1 − d̂θn,m(Xi)
. (4)

Wang, Kaji and Rockova (2022): ABC via Classification

/Both require iid data and to run classification at every iteration!



Conditional GANs

GANs can be trained to simulate from conditional distributions.
Consider a two-player minimax game

(g∗,d∗) = arg min
g∈G

max
d∈D

D(g,d)

prescribed by

D(g,d) = E(X ,θ)∼π(X ,θ) log d(X , θ)+EX∼π(X),Z∼πZ log[1−d(X ,g(Z ,X)].

Uniformly on X and Θ (for ‘flexible’ G and D), the solution (g∗,d∗)
satisfies

πg∗(θ ∣ X) = π(X , θ)
π(X)

= π(θ ∣ X)

and
d∗

g (X , θ) =
π(X , θ)

π(X , θ) + πg(θ ∣ X)π(X)
for any g ∈ G.



Bayesian GANs
The B-GAN Algorithm:

Simulate the ABC reference table {(θi ,Xi)}T
i=1 from

π(θ,X) = π(θ)p(n)θ (X (n)) and {Zj}T
j=1

iid∼ πZ (⋅).

Choose function classes G and D (e.g. neural networks parametrized
by β and ω).

Train the empirical version of Wasserstein conditional GANs

β̂T = arg min
β∶gβ∈G

⎡⎢⎢⎢⎢⎣
max

ω∶fω∈FW

RRRRRRRRRRR

T

∑
j=1

fω(Xj ,gβ(Zj ,Xj)) −
T

∑
j=1

fω(Xj , θj)
RRRRRRRRRRR

⎤⎥⎥⎥⎥⎦
. (5)

Simulate
θ̃j = gβ̂T

(Zj ,X0) for Zj
iid∼ πZ . (6)

Observed data X0 at evaluation stage, not training stage!



Toy Example

X = (x1,x2,x3,x4)′ consists of n = 4 two-dimensional Gaussian
observations with xj ∼ N (µθ,Σθ) parametrized by
θ = (θ1, θ2, θ3, θ4, θ5)′, where

µθ = (θ1, θ2)′ and Σθ = ( s2
1 ρs1s2

ρs1s2 s2
2

)

with s1 = θ2
3,s2 = θ2

4 and ρ = tanh(θ5).

T = 100K , batchsize for SGD is 6400



Sequential Refinement
/ B-GAN is not trained on observed data!

/ We want π(θ ∣ X) at observed data X = X0, not at any X .

/ The ABC reference table {(θj ,Xj)}T
j=1 may not contain enough

data points Xj in the vicinity of X0 to train the simulator when the prior
π(θ) is too vague.

, Use pilot simulator gβ̂T
(Z ,X0) in (6) obtained under the original

prior π(θ) as a proposal for the next round

, The ‘wrong’ prior can be corrected for by importance re-weighting
with weights r(θ) = π(θ)/π̃(θ).



Toy Example

Performance summary

Figure: Maximum Mean Discrepancies (MMD, log scale) between the true
posteriors and the approximated posteriors. The box-plots are computed
from 10 repetitions.



TV Bounds: The Three Terms

(1) The ability of the critic to tell the true model apart from the
approximating model

A1(F , β̂T ) ≡ inf
ω∶fω∈F

XXXXXXXXXXX
log

π(θ ∣ X)
πβ̂T

(θ ∣ X)
− fω(X , θ)

XXXXXXXXXXX∞
(7)

(2) The ability of the generator to approximate the average true
posterior

A2(G) ≡ inf
β∶gβ∈G

[EX ∥log
πβ(θ ∣ X)
π(θ ∣ X)

∥
∞
]

1/2
, (8)

(3) The complexity of the (generating and) critic function classes
measured by the pseudo-dimension Pdim(⋅).

We denote with H = {hω,β ∶ hω,β(Z ,X) = fω(gβ(Z ,X),X)} a
structured composition of networks fω ∈ F and gβ ∈ G.



TV Bounds

Let β̂T be as in (5) where F = {f ∶ ∥f ∥∞ ≤ B} for some B > 0.

Denote with E the expectation with respect to {(Xj , θj)}T
j=1

iid∼ π(X , θ)
and {Zj}T

j=1
iid∼ πZ in the reference table.

Prior Concentration: Assume

Π[Bn(θ0; ε)] ≥ e−C2nε2
for some C2 > 0 and ε > 0. (9)

Then for T ≥ Pdim(F) ∨Pdim(H) we have for any C > 0

P(n)θ0
E d2

TV (π(θ ∣X0), πβ̂T
(θ ∣X0)) ≤ CT

n (β̂T , ε,C),

where, for some C̃ > 0 and Pmax ≡ Pdim(F) ∨Pdim(H),

CT
n (β̂T , ε,C) =

1
C2nε2

+
e(1+C2+C)nε2

4

⎡⎢⎢⎢⎢⎣
2A1(F , β̂T ) +

BA2(G)√
2

+ 4C̃ B

√
log T × Pmax

T

⎤⎥⎥⎥⎥⎦
.



Implicit Variational Bayes

The goal of VB is to find a set of parameters β∗ that maximize ELBO

logπ(X0) ≥ L(β) ≡ ∫ log( π(X0, θ)
qβ(θ ∣ X0)

)qβ(θ ∣ X0)d θ. (10)

The tightness increases with expressiveness of qβ(⋅), where the
equality occurs when qβ(θ ∣ X0) = π(θ ∣ X0).

Implicit VB defines qβ(θ ∣ X0) through a push-forward mapping gβ.

We can re-write the ELBO in terms of Kullback-Leibler discrepancy

L(β) = −KL (qβ(θ ∣ X0) ∣ π(θ ∣ X0)) +C

/ We cannot evaluate the conditional density ratio in the ELBO

, We can estimate the ratio of joint distributions with a different
conditional, given X , but the same marginal π(X).



Adversarial Variational Bayes
, Joint LRT trick: define

d∗
gβ(X , θ)

1 − d∗
gβ(X , θ)

= π(X , θ)
qβ(θ ∣ X)π(X)

, (11)

where d∗
gβ ∶ (X ×Θ)→ (0,1)

The variational lower bound (10) can be re-written as

L(β) ≡ Eθ∼qβ(θ ∣ X0)[logit(d∗
gβ(X0, θ))] +C. (12)

Note that d∗
gβ(θ,X) is a solution to

d∗
gβ(θ,X) = arg max

d∈D
D(gβ,d). (13)

Adversarial VB is a max-max game!

Given β(t): find ψ(t+1) such that

ψ(t+1) = arg max
ψ

D(gβ(t) ,dψ).

Given ψ(t+1): find β(t+1)

β(t+1) = arg max
β

Eθ∼qβ(θ ∣ X0)[logit(dψ(t+1)(θ,X0))]



...and there are Wasserstein versions
Instead of KL, we can minimize Wasserstein distance between
π(θ ∣ X0) and qβ(θ ∣ X0):

β∗ = arg min
β∶gβ∈G

sup
fω∈FW

∣Eθ∼qβ(θ ∣ X0) (
π(θ ∣ X0)
qβ(θ ∣ X0)

− 1) fω(θ)∣ , (14)

Using the ABC reference table {(θj ,Xj)}T
j=1

iid∼ π(θ,X),{Zj}T
j=1

iid∼ πZ (⋅),

update ω(t+1),given β(t),

ω(t+1) = arg max
ω∶fω∈F

⎡⎢⎢⎢⎢⎣

T

∑
j=1

fω(Xj ,gβ(t)(Zj ,Xj)) −
T

∑
j=1

fω(Xj , θj)
⎤⎥⎥⎥⎥⎦

(15)

update β(t+1), given ω(t+1),

β(t+1) = arg min
β∶gβ∈G

⎡⎢⎢⎢⎢⎣

T

∑
j=1

fω(t+1)(X0,gβ(Zj ,X0)) +C
⎤⎥⎥⎥⎥⎦
, (16)

where C does not depend on β, given the most recent update ω(t+1).



Lotka-Volterra Model

The Lotka-Volterra (LV) model describes population evolutions in
ecosystems where predators interact with prey.
The model is deterministically prescribed via a system of first-order
non-linear ODEs with four parameters θ = (θ1, θ2, θ3, θ4)′ controlling

(1) the rate r t
1 = θ1XtYt of a predator being born,

(2) the rate r t
2 = θ2Xt of a predator dying,

(3) the rate r t
3 = θ3Yt a prey being born and

(4) the rate r t
4 = θ4XtYt a prey dying.

Despite easy to sample from (using the Gillespie algorithm), the
likelihood for this model is unavailable which makes this model a
natural candidate for ABC

The pseudo-marginal approach far from straightforward, if at all
possible /



Lotka-Volterra: A Closer Look
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Lotka−Volterra:  θ=(0.01,0.5,1,0.01)' 
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Simulation is started at X0 = 50 and Y0 = 100 simulated over 20 time units and

recorded observations every 0.1 time units, resulting in a series of T = 201

observations each.

True values θ0 = (0.01,0.5,1,0.01)



Prepping for ABC
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LEFT:
ABC tolerance (based on summary statistics)

RIGHT:
Classification-based log-lik estimator running LASSO (glmnet)



Likelihood is Spiky!
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Lotka−Volterra: Estimated Likelihood

↝ ABC will need a very informative prior



ABC Results

Uniform Prior: on [0,0.1] × [0,1] × [0,2] × [0,0.1]
ABC: M=10 000
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Upper panel: M = 10 000 and r = 100
Lower panel: M = 100 000 and r = 1 000.



MHC (Kaji and Rockova (2021) Results
Initialized at posterior mean from a pilot ABC run.
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burnin 1 000)



MHC: Posterior Summary Statistics

θ0
1 = 0.01 θ0

2 = 0.5 θ3 = 1 θ4 = 0.01
Method θ̄ l u θ̄ l u θ̄ l u θ̄ l u
ABC1 0.015 0.003 0.038 0.554 0.037 0.985 1.315 0.189 1.955 0.012 0.004 0.029
ABC2 0.016 0.003 0.042 0.604 0.087 0.980 1.259 0.205 1.971 0.013 0.003 0.024
MHC 0.01 0.008 0.014 0.531 0.41 0.685 1.029 0.791 1.301 0.010 0.007 0.014

ABC1: M = 10 000 and r = 100 (accepted samples)
ABC2: M = 100 000 and r = 1 000 (accepted samples)

MHC: M = 10 000 with burnin 1 000

θ̄ denotes posterior mean, l and u denote the lower and upper
boundaries of 95% credible intervals.



What about n = 1?

We compare B-GAN with Sequential Neural Likelihood (SNL), W2
ABC, and Summary Statistics ABC

Sequential refinement and VB refinement work well.



B-GAN Performance

Summary statistics of the approximated posteriors (averaged over 10
repetitions).

θ1 = 0.01 θ2 = 0.5 θ3 = 1.0 θ4 = 0.01
bias CI width bias CI width bias CI width bias CI width

(scale) (×10−3) (×10−2) (×10−1) (×10−2) (×10−2)

B-GAN 4.15 1.89 1.09 0.45 0.24 1.00 0.49 2.18
B-GAN-2S 0.70 0.21 (0.9) 0.42 0.10 (0.7) 0.11 0.33 (0.9) 0.13 0.34 (0.8)
B-GAN-VB 1.02 0.25 (0.7) 0.38 0.11 (0.9) 0.11 0.29 (0.8) 0.12 0.29 (0.7)

SNL 1.05 0.44 0.45 0.17 0.13 0.48 0.15 0.52
SS 9.58 3.80 2.49 0.91 0.49 1.76 0.68 2.72
W2 10.99 4.02 (0.9) 2.42 0.84 0.47 1.73 0.79 2.82

Bold fonts mark the best model of each column. The coverage of the
95% credible intervals are 1 unless otherwise noted in the

parentheses.



Wang, Y. and Rockova, V. (2022) Adversarial Bayesian
Simulation

Thank you!


